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Abstract
We examine two integrable discrete lattice equations obtained by Levi and
Yamilov. We show that the first one is a form of the lattice KdV equation already
obtained by Hirota and Tsujimoto, while the second one is a discrete form of
mKdV. We present the Miura transformations between the various equations
involved, including the more familiar potential form of the lattice mKdV.

PACS numbers: 02.30.Ik, 05.45.Ra

In a recent article [1], Levi and Yamilov derived two partial difference equations. Their
construction was based on the combination of Miura transformations linking the Volterra
differential-difference equation to the modified Volterra, for the first one, and to the doubly
modified Volterra, for the second one. The authors of [1] explicitly showed the integrability
of these systems by constructing their Lax pairs. Moreover, they claimed that these equations
do not belong to the Adler–Bobenko–Suris classification given in [2] but that they are 3D
consistent in a newer version [3] of this classification. In what follows, we analyse the two
lattice equations of Levi and Yamilov and show that the first equation is a discrete form of
KdV, obtained by Hirota and Tsujimoto in [4] where it was dubbed discrete Lotka–Volterra,
and that the second equation is a discrete version of the modified KdV.

The first equation of Levi and Yamilov has the form

(um+1,n + 1)(um,n − 1) = (um+1,n+1 − 1)(um,n+1 + 1). (1)

We start our analysis by examining its singularity pattern. Since (1) is an integrable equation,
we expect its singularities to be confined [5]. It turns out that this is indeed the case. A
straightforward calculation leads to the following pattern:

1 − ∞ − −1
| | |

−1 − ∞ − 1.
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This means that, if at some point (m, n) on the lattice um,n happens to be equal to
−1, from equation (1) it follows that um,n+1 = 1, both um+1,n and um+1,n+1 diverge,
um+2,n = 1, um+2,n+1 = −1 and all the subsequent u’s are finite. Based on the singularity
pattern, we can now proceed to the bilinearization of equation (1). As we have explained in
[6] the existence of a single singularity pattern is expected to be associated with the existence
of a single τ -function. With a little hindsight, we introduce the following ansatz:

um,n = −1 +
Fm−1,n−1Fm+1,n

Fm,n−1Fm,n

= 1 − Fm+1,n−1Fm−1,n

Fm,n−1Fm,n

. (2)

Substituting appropriate combinations of this ansatz into (1), the latter is identically verified.
Moreover, from the second equality in (2) we obtain the following bilinear equation:

2Fm,n−1Fm,n − Fm−1,n−1Fm+1,n − Fm+1,n−1Fm−1,n = 0. (3)

We should point out here that the coefficients of (3) do not have any deep meaning. Indeed,
introducing a quadratic gauge of the form F → eαm2+βmn+γ n2

F we may assign to these
coefficients any value we wish.

Equation (3) is nothing but the bilinear form of the discrete KdV equation [7]. In [8], we
examined integrable lattice equations and derived the discrete form of KdV, starting from the
Hirota–Miwa equation. The form obtained was

z1fm,n−1fm,n + z2fm−1,n−1fm+1,n + z3fm+1,n−1fm−1,n = 0, (4)

i.e. precisely equation (3) up to a gauge which, as explained above, allows one to assign
arbitrary values to the coefficients. We, therefore, claim that equation (1) of Levi and Yamilov
is just a discrete analogue of KdV. Moreover, it is not a new form but one that has been known
for quite some time. Indeed, in [4] Hirota and Tsujimoto have presented three integrable
lattice equations related to KdV. The first was the ‘standard’ discrete KdV equation,

xm,n+1 − xm+1,n−1 = 1

xm+1,n

− 1

xm,n

. (5)

The two remaining equations were presented as the ‘discrete Lotka–Volterra of type I’,

wm+1,n − wm,n = wm+1,nwm+1,n−1 − wm,nwm,n+1, (6)

and the ‘discrete Lotka–Volterra of type II’,

Wm+1,n

(1 + Wm+1,n−1)(1 + Wm+1,n)
= Wm,n

(1 + Wm,n)(1 + Wm,n+1)
. (7)

The two Lotka–Volterra equations are related in an elementary way. In fact, it suffices to put

wm,n = Wm,n

1 + Wm,n

(8)

in the discrete Lotka–Volterra of type I in order to recover the equation of type II.
Focussing on equation (6), we rearrange its terms and obtain

wm+1,n(1 − wm+1,n−1) = wm,n(1 − wm,n+1). (9)

We then perform a change of axes, introducing new indices, N ≡ m,M = n + m, after which
equation (9) is rewritten as

wM+1,N+1(1 − wM,N+1) = wM,N(1 − wM+1,N ). (10)

Finally, we introduce u = 1 − 2w, whereupon (10) becomes identical to the equation of Levi
and Yamilov (where the indices must be understood as capitalized to M,N ). Thus equation (1)
is just what Hirota and Tsujimoto call the discrete Lotka–Volterra equation although, as we
have seen, based on the bilinear form the proper name should be that of the discrete KdV.
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At this point, it is natural to ask the question whether this form of the discrete KdV is
related to the standard one, i.e. equation (5). First we rotate the axes as before and obtain from
discrete KdV the equation

xM+1,N − xM,N+1 = 1

xM+1,N+1
− 1

xM,N

. (11)

Using the relations given by Hirota and Tsujimoto, we introduce the Miura:

uM,N = 1 − xM,NxM+1,N

1 + xM,NxM+1,N

. (12)

When x satisfies the standard discrete KdV (11), u satisfies equation (1) with capitalized
indices.

We now turn to the second equation of Levi and Yamilov which has the form

(1 + vm,nvm+1,n)(μvm+1,n+1 + vm,n+1/μ) = (1 + vm,n+1vm+1,n+1)(μvm,n + vm+1,n/μ). (13)

As in the case of the discrete KdV, we start with its singularity analysis, which yields the
following patterns:

±1/μ − ∓μ

| |
±μ − ∓1/μ.

Since two different patterns are present we shall try to bilinearize (13) using two
τ -functions. We introduce F and G—associated with the above singularity pattern with
the upper and the lower sign, respectively—and require that the dependent variable um,n take
the value μ when either F vanishes at the point (m − 1, n − 1) or G vanishes at (m, n).
Furthermore, if F and G are interchanged, u takes the value −μ. The appropriate ansatz now
becomes

vm,n = μ

(
1 +

Fm−1,n−1Gm,n

�

)
= −μ

(
1 +

Fm,nGm−1,n−1

�

)
, (14)

and thus � = −(Fm,nGm−1,n−1 + Fm−1,n−1Gm,n)/2. We can rewrite the above ansatz as

vm,n = μ

(
Fm,nGm−1,n−1 − Fm−1,n−1Gm,n

Fm,nGm−1,n−1 + Fm−1,n−1Gm,n

)
. (15a)

Similarly, for the points where u takes the value ±1/μ we have also

vm,n = 1

μ

(
Fm,n−1Gm−1,n − Fm−1,nGm,n−1

Fm,n−1Gm−1,n + Fm−1,nGm,n−1

)
. (15b)

The bilinear equations are obtained by equating the right hand sides of (15a) and (15b). Again,
using the appropriate combination of (15a) and (15b), equation (13) is automatically satisfied.
It is convenient to separate the equations as follows:

μ2(Fm,nGm−1,n−1 − Fm−1,n−1Gm,n) = Fm,n−1Gm−1,n − Fm−1,nGm,n−1, (16a)

Fm,nGm−1,n−1 + Fm−1,n−1Gm,n = Fm,n−1Gm−1,n + Fm−1,nGm,n−1. (16b)

Clearly some arbitrariness enters at this point but this can be remedied by a gauge
transformation. Next we add and subtract (16a) and (16b), and find

Fm−1,n−1Gm,n(1 − μ2) + Fm,nGm−1,n−1(1 + μ2) = 2Fm,n−1Gm−1,n, (17a)

Fm−1,n−1Gm,n(1 + μ2) + Fm,nGm−1,n−1(1 − μ2) = 2Fm−1,nGm,n−1, (17b)
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or equivalently

2μ2Fm−1,n−1Gm,n = Fm,n−1Gm−1,n(μ
2 − 1) + Fm−1,nGm,n−1(μ

2 + 1), (18a)

2μ2Fm,nGm−1,n−1 = Fm,n−1Gm−1,n(μ
2 + 1) + Fm−1,nGm,n−1(μ

2 − 1). (18b)

We can now compare these bilinear equations to those obtained in [9] for the discrete modified
KdV:

(ε + δ)Gm−1,nFm,n−1 + (ε − δ)Gm,n−1Fm−1,n − 2εGm,nFm−1,n−1 = 0, (19a)

(ε + δ)Gm,n−1Fm−1,n + (ε − δ)Gm−1,nFm,n−1 − 2εGm−1,n−1Fm,n = 0. (19b)

Taking ε = μ2, δ = −1, we remark that equations (19) coincide with those of (18). Thus,
on the basis of the bilinear form we can conclude that equation (13) of Levi and Yamilov is a
discrete analogue of the modified KdV equation.

A discrete form of mKdV is already known. Indeed, Capel et al [10] have presented a
nonlinear form of what they call the potential discrete mKdV. It has the form

(ε − δ)(wm,nwm−1,n − wm,n−1wm−1,n−1) + (ε + δ)(wm,nwm,n−1 − wm−1,nwm−1,n−1) = 0.

(20)

Its bilinear form (19) was obtained in [9] through the ansatz w = F/G. However, reordering
the terms in (20) we find

μ
wm,n − wm−1,n−1

wm,n + wm−1,n−1
= 1

μ

wm,n−1 − wm−1,n

wm,n−1 + wm−1,n

, (21)

which is clearly not the equation of Levi and Yamilov. The fact that the bilinear form of
the latter is the same as that of (20) is not a problem: the bilinear forms do not distinguish
between the standard and the potential form of some equation; only the ansatz for the variable
of the nonlinear equation in terms of the τ -functions is different. Comparing now (21) to
the right-hand sides of (15a) and (15b) (using the bilinear ansatz w = F/G) it is clear that
equation (21) merely expresses the fact that the left-hand sides of (15a) and (15b) are identical.
Moreover, using (15) we can give the Miura transformation between the potential mKdV and
the equation of Levi and Yamilov. We find

vm,n = μ
wm,n − wm−1,n−1

wm,n + wm−1,n−1
= 1

μ

wm,n−1 − wm−1,n

wm,n−1 + wm−1,n

. (22)

At this point a short digression is in order. The potential mKdV of Capel and collaborators
is not the only one appearing in the literature under this name. Indeed, in [11] Hirota has
derived another form of the discrete potential mKdV, based on his bilinear formalism. The
equation of Hirota has the form

tan
(
φ

k+ 1
2

j − φ
k− 1

2
j

)
= ε tan

(
φk

j− 1
2
− φk

j+ 1
2

)
. (23)

While (23) is at first sight different from (20), the two equations are in fact identical. First, we
expand both sides of equation (23) as

tan φ
k+ 1

2
j − tan φ

k− 1
2

j

1 + tan φ
k+ 1

2
j tan φ

k− 1
2

j

= ε
tan φk

j− 1
2
− tan φk

j+ 1
2

1 + tan φk

j− 1
2

tan φk

j+ 1
2

. (24)

Next we introduce the variable w = 1+i tan φ

1−i tan φ
≡ e2iφ and transform (24) into

w
k− 1

2
j − w

k+ 1
2

j

w
k− 1

2
j + w

k+ 1
2

j

= ε
wk

j− 1
2
− wk

j+ 1
2

wk

j− 1
2

+ wk

j+ 1
2

. (25)
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It suffices now to take ε = μ2 and change the axes so as to have m = j + k + 1/2,

n= j − k + 1/2, in order to obtain equation (21).
We complete our analysis by showing how the two equations of Levi and Yamilov are

related, which is something we believe to be of practical interest. Since these equations are
discrete forms of KdV and mKdV, we expect a Miura transformation to exist between them.
In order to find this transformation we again rely on the bilinear formalism. First we remark
that, using equation (16), the bilinear form of a certain combination of vm,n and vm+1,n can be
expressed in terms of the τ -function F only. We have

(μ − vm,n)(μ + vm+1,n)

(1 − μvm,n)(1 + μvm+1,n)
= μ2 Fm−1,n−1Fm+1,n

Fm−1,nFm+1,n−1
. (26)

Next, using the ansatz (2) we can express the rhs of (26) in terms of u. However, if one
eliminates G from (16a), (16b) and their appropriate up- and down-shifts, one finds an equation
of form (4) with coefficients different from those in (3). This means that the τ -function, F,
here is not exactly that of equations (2) and (3) but, as pointed out when equation (3) was
derived, this just means that the particular gauge in which (16a) and (16b) are written differs
from that of (2) and (3). Correcting for this difference in gauge, we finally obtain

um,n + 1

um,n − 1
= (μ − vm,n)(μ + vm+1,n)

(1 − μvm,n)(1 + μvm+1,n)
, (27)

and, solving for u,

um,n = (1 + μ2)(vm,nvm+1,n − 1) + 2μ(vm,n − vm+1,n)

(1 − μ2)(vm,nvm+1,n + 1)
, (28)

which is, as can easily be verified, the Miura transformation relating the two equations of Levi
and Yamilov.

Before concluding this paper it seems necessary to justify the names attributed to the
equations, in particular, since we claim that equation (13) is a discrete form of mKdV, and
not of its potential variant. This can be done by proceeding to the continuous limit. We start
with equation (1) which is a discrete form of KdV. First we introduce the ansatz u = κ + ε2U .
Next we choose a shift in the direction m to correspond to a pure space evolution, i.e.
um+1,n = κ + ε2(U + εUx + ε2Uxx/2 + ε3Uxxx/6 + · · ·). Similarly, a shift in the direction n
corresponds to an evolution in both x and t, the corresponding velocity being c/ε2. We have
thus um,n+1 = κ + ε2(U + cεUx + c2ε2Uxx/2 + c3ε3Uxxx/6 + ε3Ut + · · ·). In order to go to the
continuous limit we take ε → 0. We find first that c and κ are related through cκ + 1 = 0.
Since κ is a free parameter, we fix it to κ = 1/3 (which means that c = −3) in order to
simplify the form of the final equation. We thus obtain

Ut − 9UUx + 2Uxxx = 0, (29)

which is obviously the KdV equation. In the case of equation (13) the ansatz is v = εV .
We choose the evolutions in the m and n directions just as we did previously, where the
speed c is now related to μ. We find c = (1 − μ2)/(1 + μ2). Again we simplify the final
equation by assigning a specific value to μ. Taking μ = i

√
2 (which means that c = −3) we

find

Vt + 6V 2Vx + 2Vxxx = 0, (30)

which is clearly the modified KdV equation in its standard form. Hence the naming of the
two equations is justified on the basis of the continuous limit (as is customary in the discrete
domain). We should also point out that the continuous form of the Miura transformation (28),

5



J. Phys. A: Math. Theor. 42 (2009) 282002 Fast Track Communication

relating the two equations of Levi and Yamilov, is just the usual Miura transformation linking
KdV and mKdV. We indeed find

U = 2
1 + μ2

1 − μ2
V 2 − 2μ

1 − μ2
Vx, (31)

provided c, μ and κ are related through the expressions found above.
Thus the equations obtained by Levi and Yamilov are discrete forms of KdV and mKdV,

respectively. While the first one has been known for quite some time, the second one is
apparently new. What is interesting is that the equations analysed here are connected, through
Miura transformations, not only to each other but also to other integrable discrete equations
like the ‘standard’ lattice KdV or the potential lattice mKdV equations.
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